Balance's Clip Safe Recording

Posted Sept. 9, 2013, 11:34 a.m.

In this micro tutorial we're taking a look at the new Clip Safe feature when recording with our Balance audio interface and either Reason Essentials or Reason software. Clip Safe lets you restore distorted takes, saving what could have been a perfect performance if not for the overload.

As musicians, once we start recording and putting our "all" into the performance we often find that our playing is louder than it was when we set our levels. Those of us who have lost too many good takes to distortion end up recording while watching the levels carefully. That sort of distraction hurts the performance. It's very difficult to be both performer and engineer at the same time.

Clip Safe lets us record, concentrate on our performance, and know that even if we do overload while recording we can simply repair our distorted audio and save the take.

Posted Sept. 9, 2013, 11:34 a.m.

Peter Malick Home Sessions

Posted Feb. 3, 2011, 9:28 a.m.

Seasoned music producer and Norah Jones collaborator, Peter Malick, packed up his studio and moved it home to his living room and garage. For its maiden session he brought in indie artists Amber Rubarth, Courtney Jones, and a veritable A-List of players from the LA singer-songwriter scene. On Peter's first days in the new space and first day on Record 1.5 we rolled cameras to capture the new 'studio' in action.

In the first video singer-songwriter Courtney Jones records her latest song, "Enemy Fire," with Peter. The studio stretches through the entire house from the living room where the piano is set up, the den which has an unconventional drum kit, and the back room where Peter has run cables for a make-shift control room.

The second video follows day two in the new studio as Amber Rubarth invites her friends over to help her record "Full Moon in Paris." Peter Malick balances the common limitations of home recording like a reduced number of microphones and a lack of isolation with the more important goal of capturing a special moment while not letting "bleed" decide important production decisions.

Please note that ‘Record’ is discontinued but all of its features, and then some, lives on in Reason!

Posted Feb. 3, 2011, 9:28 a.m.

Recording Drums in your Home Studio

Posted March 10, 2006, 10:56 a.m.

By Giles Reaves

Drums are probably the oldest musical instrument in existence, as well as being one of the most popular. Drums are also one of the most basic instruments, having evolved little in concept through the years: at their most basic, drums are anything you strike which makes a sound!

As simple as they are, drums can be difficult to master. The same can be said of properly recording drums. While most folks may recommend that you go to a 'real studio' to record drums, that isn't always a possibility. They will also tell you that drums are difficult to record properly, which is at least partly true. But it's also true that there's a lot you can do, even with a very limited setup - if you know some very basic techniques.

To introduce you to the world of drum recording at home, I've gathered some of my favorite tips and recording techniques in hopes of encouraging you to try your hand at recording some drums in your personal home studio. I'll cover a few different scenarios from the single microphone approach on up to the many options that become available to you when you have multiple microphones.

Drums in 'da House

There are many ways to approach recording drums besides the ‘mic everything that moves' approach, including many time honored 'minimalist' approaches. Sometimes all it takes is a well placed mic or two to capture a perfectly usable drum recording. Luckily, this 'minimal' approach works well in the home studio environment, especially considering the limited resources that are typically available.

It's worth mentioning that there are as many drum 'sounds' as there are musical styles. Certain drum sounds can require certain drums/heads and certain recording gear to accurately reproduce. Other drum sounds are easier to reproduce with limited resources, mainly because that's how they were produced in the first place. Try to keep your expectations within reason regarding the equipment and space you have available!

Issues to be Aware of:

First, let's cover some of the potential issues you may run into when bringing drums into your home studio:

The first issue is that drums (by design) make noise - LOUD noise. Some folks just don't like noise. This is usually the first hurdle to overcome when considering recording drums at home. The best advice may simply to be considerate of others and be prepared to work around their schedules. There is little you can do (outside of spending loads of cash) to totally isolate the drums from the outside world.

While it is unlikely, you may run into a situation where a noise from outside will intrude on your recording. Like already mentioned, there is little you can do about this other than work around the schedules of others. Most home recordists will likely have already run into these issues before, and have learned to work around them!

The second hurdle is usually not having enough microphones to 'do it right'. There are some time-tested ways to get great drum sounds using fewer mics, or even just one good mic. Rather than looking at this as an obstacle to overcome, I prefer instead to call this the purist approach!

A possible third hurdle is the sound of the room you're recording in. It can be too small (or even too big), too live or too dead, too bright or too dark. Some of these issues can be dealt with by instrument placement or hanging packing blankets, some you try to avoid with close miking! Generally speaking, a smaller/deader/darker room will be easier to deal with than the opposite. The thing to understand here is that the room itself will almost always be a factor, since the farther you move a mic from the source of the sound, the more of the room sound you will pick up.

Finally, you should also be prepared to provide headphones (at least the drummer will want phones, but will often bring their own), and make sure you have all the cables you need and that they are long enough to reach where they have to reach.

Be Prepared

Options are good - multiple cymbal choices, a few different snares to choose from, or alternate drum heads or sticks/mallets, or even different mics are all good options to have on hand (but not absolutely essential).

Ask the drummer to bring a small rug to set the drums on (a common 'accessory'), and be prepared to provide one if they don't have one (assuming you don't already have carpet). Also consider having a few packing blankets on hand to temporarily tame any 'overly live' walls or other surfaces.

One thing before I forget - a drum kit is only as good as the drummer that is tuning and playing it. A drummer should have decent gear (no 'pitted' heads, unexpected rattles, or malfunctioning hardware please), the basic skills to tune the kit, good time/meter, and be able to hit the drums consistently. Many folks overlook this last quality, but the sound of a drum can change drastically with different stick position and velocity. The more consistent a drummer is (both with timing and with dynamics), the more 'solid' the sound will be in the end (and the better it will make you look as well!).

And finally, the actual drum part is important too - not every drummer will share your musical vision and it's up to you to keep the drum part 'musical' (whatever that means to you) and not too 'drummery' (overly busy and showing off). It may be helpful in some circumstances for you to program the drum part ahead of time (either alone or with the drummer) so that you have a reference point and are all on the same page. Let the drummer listen this track to prepare for the session, and let them know how strictly you'll need them to stick to the programmed part.

To Recap: Issues to address prior to a drum session:

  • Noise Issues

  • Drum/Cymbal Choice and Tuning

  • Drummer's Timing and Dynamics

  • Mic Choice/Placement

  • Sound of the Room

  • The Drum Part/Pattern

Session Day

Space is the Place

If this is the first time you're recording drums in your space, you may hear things you never heard before. This is where the packing blankets can come in handy, especially if there is ringing (Flutter Echos) or if the space is just too bright or 'roomy' sounding. If you hear these things, try to cover any large flat spaces, especially glass or mirrors. As with every other aspect of recording, you will have to experiment a bit to see which locations help with your specific issues. You may be able to locate the obvious problems ahead of time by simply clapping (and listening) while walking around your studio space.

The physical placement of the kit in your space may be dictated by available space, but if you do have the option, try moving just the kick around and listen in the room to how it sounds. You will probably find that you prefer one location over another - I suggest choosing the position that produces the most low end, as this is the toughest frequency to add if not present in the original source. Also listen to the snare, but keep in mind you'll have to compromise in placement between the sound of all the drums in the room. You're looking for the place where the entire kit sounds its best. Don't forget to move yourself around with each new kick position. If you find a spot that sounds particularly good, put a mic there!

Once you settle on placement for the kit, let the drummer finish setting it up and fine tuning it before you begin to place microphones. You may have to guess at the placement at first, then tweak it by listening. When recording drums in the same room as your speakers, you can better judge the sound by recording the drums first and then listening to playback to make any decisions. Even when drums are in the next room, the "bleed" you hear through the wall, being mostly low end and coming from outside of the speakers, will give you a false sense of 'largeness'. So be prepared: the first 'playback' can often come as a bit of a disappointment! It may help to have a reference recording of drums that you like as a 'sonic comparison' to refer back to from time to time when getting initial drum sounds.

Now let's move on to discussing where to put the mics, once you get the drums all setup, tuned, and ready to rock. Now may be a good time to tell the drummer to get ready to play the same beat over and over for the foreseeable future!

If you only have one mic:

[NOTE: Choosing the Microphone: Any microphone that is a good vocal mic will be a great place to start when miking the drum kit with a single mic.]

There are not many options to consider when you only have one microphone to mic an entire drum kit - however, this can actually be a good thing! First off, you don't have to worry about mic selection as the decision has already been made for you. Second, there is no chance in the world for any phasing issues to be a factor! That leaves mic placement as the only concern, and that's where the fun begins.

Sometimes you have limitations in space that prevent certain mic positions (low ceilings, close walls), sometimes there may be one drum or cymbal in the kit that is louder or softer than the rest and may dictate mic position - you never know what you may run into. But if you can find the 'sweet spot', you'd be amazed at how good one mic can sound!

It's best to have a friend help with this next part, have them move the mic around the drum kit as the drummer plays a simple beat. Listen to how the 'perspective' changes. You can learn a lot about how a drum kit sounds (generally and specifically) by listening to a single microphone moving around a kit. You may have to record this first, and then listen on playback - if so, be sure to 'voice annotate' the movement, describing where the mic is as it's moved.

One mic moving from front to back of drum kit

When you listen to this recording, you can hear the emphasis change from a 'kick heavy' sound in front of the kit, to a more balanced sound in the back of the kit. The microphone, a Lawson L-47 (large diaphragm tube condenser) is about four feet off the ground. You can faintly hear me describe my position as I move the mic.

If I had to pick just one microphone position, I'd say my favorite single mic position is just over the drummer's right shoulder (and slightly to their right), pointing down at the kick beater area. Use the drummer's head to block the hi hat if it's too loud. Raise the mic higher if you have the space and want a more distant sound.

For an even more distant sound, position your single mic out in front of the kit and at waist high (to start). Moving the mic up and down can dramatically change the tone of the kit, helping you to find the spot with the best balance between drums and cymbals.

Further options with a single microphone:

Consider recording each drum separately (kick, then snare, then hi hat), one at a time. The "Every Breath You Take" approach. Or at least take samples of the each drum, and program patterns using these sounds.

In fact, if you take the time to bring drums into your home studio, you should at least record a few hits of each drum - you can cut the samples out later if time is a concern. No time like the present to start building or add to your personal drum sample library.

If you only have a few mics:

Two mics:

  • First Choice: Right Shoulder (RS) position, plus Kick (K) or possibly Snare (S)

  • Second Choice: Stereo Overheads

Three mics:

  • First Choice: RS plus K $amp; S

  • Second Choice: Kick, plus Stereo Overheads

Four mics:

  • Stereo Overheads plus K & S

With four mics you can have stereo overheads plus close mics (spot mics) on Kick and Snare. Having two mics for overheads doesn't mean they have to be exactly the same exact model microphone (but should be as similar as possible). With two mic for overheads, you have many choices of microphone configurations including A-B (spaced pair), X-Y (coincident), ORTF (near coincident), M-S (using one cardioid and one figure 8 mic), the Glyn Johns or "RecorderMan" approach, or you can even try a Blumlein Pair if you have two mics that can do a 'figure 8' pickup pattern.

Beyond Four Mics

Going beyond 4 or so mics means you will begin to mic toms or even hi hats or ride cymbals. You may also opt to record more distant 'room' mics if you have enough microphones, preamps, and inputs to your recorder. The sky's the limit, but don't be too concerned if you try a mic position that ends up being discarded in the end.

Further options with a single microphone:

Obviously, with only one or two microphones to cover an entire drum kit, you can't place the mics very close to any one drum. But when you have more mics at your disposal you may begin to use what are sometimes called 'spot mics', or more commonly 'close mics'.

[NOTE: For drums, dynamic mics with cardioid or hyper-cardioid pickup patterns are preferred for close miking, while large and small diaphragm condensers are preferred for overhead and room mics.]

With close mics on a drum kit, you are attempting to isolate each drum from the rest of the kit - this is not a precise science, as you will always have a bit of the other drums 'bleeding' into every other close mic. By positioning the mic close to the desired drum, and also paying attention to the pickup pattern of the mic you can achieve a workable amount of isolation.

When considering the position of a microphone, the most important aspect of close miking is the actual position of the mic's diaphragm in the 3D space. The second more important aspect is the pickup pattern of the mic, and how you are 'aiming' it. Most of the time, when considering close miking a drum kit, you are not only aiming the mic AT the desired source but also AWAY from all 'undesired' ones. Every directional mic has a 'null' point where it is the least sensitive, usually at the back of the mic. By aiming this 'null' point at the potential offenders you can reduce the level of the offending instruments. One common example is aiming the back of the snare mic at the hi hats to minimize the amount of hi hat bleed (a common problem with a close snare mic).

Kick Starters:

If there's a hole in the front head of the kick, placing the mic diaphragm just inside this hole is a great place to start. With the mic further inside the drum, you can sometimes find a 'punchier' position. With the mic outside the front head, you can get a bigger/fuller sound.

Snare Position:

The best place to start when miking a snare up close is a few inches above the drum head and just inside of the rim when viewed from above. I usually aim the mic down at the center of the drum, which also helps to aim the 'null' at the hi hat. But remember, it's the position of the diaphragm in the 3D space that contributes most to the sound of the snare when the mic is this close. Moving the entire mic up and down, or in and out will produce a more dramatic change than simply 'aiming' the mic differently.

Overhead Mic Options:

Overhead microphone ‘cluster’ for comparing different positions/techniques

Probably the most common miking of overheads is a spaced pair of cardioid condenser mics facing down, and about 6-8 or more feet above the ground (2-4 feet above the drums and cymbals), and as wide as required for the kit (follow the 3:1 rule for better mono compatibility, see below). Also common are an ORTF or X-Y miking configuration, but we will demonstrate all the above approaches so you can hear the differences for yourself.

There are two different general approaches to overhead drum mics: capturing the entire kit or capturing just the cymbals. With the first approach, you go for the best overall drum sound/balance from the overheads. With the second, you only worry about capturing the cymbals and usually filter out much of the low frequencies. The following techniques can be applied to either approach, with varying degrees of success.

If you have fewer overall mics on a drum kit, you will most likely need to capture the entire kit with the overhead mics. In fact, it's often best to begin with just the overhead mics and get the best possible sound there first. Then you add the kick and snare 'close mics' to bring out the missing aspects (attack, closeness) to fill out the sound coming from the overheads. So with fewer total mics, the overhead mics become VERY important.

Here are the various overhead techniques we will explore, with a short description of the technique. Also listed is the gear used to record the examples of each technique. Where possible we used the type of microphone typically used for that miking technique.

X-Y, or Coincident Pair

Rode NT-5s, Digidesign "Pre" mic pre

With this approach you are placing two mics as close together as possible, but aimed at a 90° angle to each other. The mono compatibility is second to none, but the stereo image isn't that wide. (see illustration below)

ORTF, or Near Coincident Pair

Rode NT-5s, Digidesign "Pre" mic pre

ORTF allows you to combine the best of a spaced pair and an X-Y pair. You get decent mono compatibility, but a wider stereo image. Like X-Y, one advantage is that you can use a 'stereo bar' to mount both mics to the same stand. This saves space and makes setup a breeze as you can 'pre-configure' the mics on the stereo bar before you even put them on the stand. (see illustration above)

Rode NT-5s mounted on the “Stereo Bar” attachment, set to ORTF

A-B, or Spaced Pair

AKG c3000, Digidesign "Pre" mic pre


This common miking approach can be use for mainly cymbals or the entire kit. Either way, you may want to be familiar with the 3:1 rule for multiple mics: for every "one" unit of distance from the sound source to the mic, the two mics should be three times this distance from each other. If the mics are one foot above the cymbals, they should be three feet from each other. The main reason for this 'rule' is to help with mono compatibility, so don't sweat it too much if you can't hit these numbers precisely. If you check for mono compatibility (assuming it's important in your work) and you don't hear a problem, you're fine! By the way, in our example the mics are about two feet from the cymbals, three feet from each other, and doesn't seem to be a problem.

Glyn Johns Approach

Lawson L-47, API mic pre

This is a four mic approach, which using a close mic for kick and snare, and two overheads in a 'non-standard' configuration. The first mic is centered directly over the snare, between three and four feet away. The second mic is aimed across the drums from the floor tom area, and must be exactly the same distance from the snare. Some folks pan the two overhead mics hard left/right, other suggest bringing the 'over snare' mic in half way (or even both mics in half way).

Recorderman Approach

Rode NT-5s, Digidesign "Pre" mic pre

Named after the screen name of the engineer who first suggested this approach, it is similar to the Glyn Johns approach in that you begin with a mic directly over the snare drums. But it diverges from that approach with the second overhead mic, placing it in the "Right Shoulder" position. This can also be considered an extension of the one mic 'over the right shoulder' approach. Fine tuning is achieved by measuring the distance from each mic to both kick and snare, and making each mic equal distance from each drum. This is easily accomplished by using a string, but difficult to describe in writing. For a further explanation of this technique, check out this YouTube video.

Blumlein Pair

Royer 122 ribbon mic (figure 8), Focusrite mic pre

Named after Alan Blumlein, a "Blumlein Pair" is configured using two 'figure 8' microphones at 90° to each other and as close together as possible. This approach sounds great for room mics, by the way.


Lawson L-47s, API mic pres


The Mid-Side technique is the most intriguing mic configuration in this group. In this approach, you use one cardioid (directional) mic and one 'figure 8' (bi-direction) mic for the recording. But you need to use an M-S 'decoder' to properly reproduce the stereo effect. The 'decoder' would allow you to control the level of the mid and the side microphone, allowing you to 'widen' the stereo image by adding more 'side' mic. This technique (along with X-Y and Blumlein) has great mono compatibility. This is because with M-S, to get mono you just drop the 'side' mic all together and you're left with a perfect single microphone recording in glorious mono.

The Session

I invited a few engineer friends to the Annex Studio for a 'drum day' to record the examples for this article. It's always more fun to do this stuff with some friends! It's a good idea to have someone move the mics while you listen - sometimes the mic doesn't end up in a position that 'looks right' (even though it may sound perfect!). We took the time to get each approach setup as precisely as possible, and recorded all of them in a single pass so they could be compared side by side.

The recording space is a large, irregularly shaped room, about 24 by 30 'ish feet with 9 foot ceilings. There are wood floors throughout (carpet under the drums) and we hung one large stage curtain to tame the room a bit for this recording. The overhead mics, for the most part, were about 6-7 feet above the floor (2-3 feet from the ceiling).

The Reason Song File

I've provided the Song File because it's easier to compare between the different miking positions when you can switch as a track plays. I've set it up so that there are "Blocks" with the title of each section. Just click on a block and hit "P" on the keyboard and that section will begin loop playback. As it is currently setup, you must mute and un-mute tracks in the sequencer - you could also do this in the SSL Mixer by un-muting all the sequencer tracks and using the Channel mutes instead.

Single Mic Sweep, front to back

The first track is a single microphone starting from in front of the kit, and slowly moving around to the back and ending up in the "Right Shoulder" position. Listen closely and you'll hear me describing my position as I move.

Compare Overhead Mic Positions

Next you will find a few bars of drums with close mics on Kick and Snare, and the following overhead tracks: X-Y, ORTF, A-B, RecorderMan, Glyn Johns, Blumlein. Playing this clip allows you to explore the different miking techniques, and allow blending of the close mics at will. All the "stereo" overhead tracks are designed to be heard one at a time, although the mics are all in phase so they certainly could be used in combination with each other if you're feeling creative. But the main purpose of this clip is to allow you to hear the difference between the various miking techniques presented.

Moved the Royers to a Room Mic Position

The third clip is a similar drum pattern, with the Royer ribbon microphones (Blumlein Pair) moved to 15 feet in front of the drums. This is our typical 'room mic' position and mic choice, and is the only difference between the previous clip and this clip. In my opinion, the sound of this miking technique combined with the 'color' of a ribbon mic makes the perfect 'room' sound. For a room mic to work, the room must sound great, of course. But also it has to be more diffused and a bit 'out of focus' compared to the close mics, which produces a similar effect as the 'blurry' background of a photo. As in the photo example, having a blurry background can help to put more focus on the foreground (close mics).

Fun with Mid-Side - Adjust M-S in Rack

Finally we have a Mid-Side recording (plus the Kick and Snare close mics) to play with. We didn't have enough mics to include it in the first round, but wanted to present it as an additional track. In addition to drum overheads, the Mid-Side approach also works well with room mics, because you can increase or reduce 'width' after the recording. I've inserted an M-S decoder on the Insert for this channel in the mixer, and by going to 'rack view' you can use the M-S combi to adjust the balance between the Mid and the Sides.

The Microphones

Kick: Sennheiser 421, API mic pre
Snare: Shure SM57, API mic pre
X-Y, ORTF, RecorderMan: Rode NT5s, Digidesign "Pre" mic pre
A-B: AKG c3000, Digidesign "Pre" mic pre
Blumlein: Royer 122 ribbon mics, Focusrite mic pre
Glyn Johns, Mid-Side: Lawson L-47s, API mic pres

The Drums

1967 Gretsch kit
22x14 Kick
16x16 Floor Tom
13x9 Rack Tom
14" Pearl Snare
Zildjian and Paiste Cymbals

Additional Thoughts

There are always other ways to record drums. Here are a few slightly out-of-the-box approaches for your consideration.

The "Every Breath You Take" Approach:

You don't necessarily need to record the entire kit at once - this can help if you only have one mic. Things to plan for: the drummer must know about this in advance. It's not as easy as you would think to only play one instrument at a time! This approach can work especially well if you're building up a rhythm track, much like you'd program a track with a drum machine. Start with the kick, then add snare, then hi hat. Move on to the next beat. Then for fun you can us one of the 'One Mic' approaches.

The Quiet Approach...shhhhh:

Sometimes in the studio, less actually IS more! Case in point, recording drums that are lightly tapped can sometimes produce huge sounds when played back at loud levels. This approach will work best if you can record one drum at a time, and will certainly help with neighbor issues as well! You can also apply this technique to sampling as well. Consistency is the key when playing softly - sampling can help if you can't play softly at a consistent level.

Sampling, Why Not!?:

Sometimes you don't have all the ingredients for a full drum session. Don't overlook sampling as a way to get around some of these issues - and why not do it anyway! Don't forget to record multiple hits at multiple levels, even if all you need at first is one good single sample - these additional samples may come in handy later, and you never know when you'll have the drums all tuned and setup again (and it only takes a few minutes)!


The 'shaker' family of percussion can be recorded with any mic, depending on the sound you're going for. As a starting point, any mic that's good on vocals or acoustic guitar will work fine for the 'lighter' percussion like shakers and bells etc. For hand drums like Djembes and Dumbeks, or Congas and Bongos, you can approach them like kicks/snares/toms. A good dynamic mic on the top head, and sometimes (for Djembes in particular) a good kick drum mic on the bottom. Watch for clipping - these drums can be VERY dynamic!

Special Thanks:

Annex Recording (Rob Duffin, Josh Aune, Perry Fietkau, Trevor Price), and Zac Bryant (for playing drums) with Victoria

Giles Reaves is an Audio Illusionist and Musical Technologist currently splitting his time between the mountains of Salt Lake City and the valleys of Nashville. Info @ and on by searching for “Giles Reaves” and following the first FIVE entries (for spelling...).

Posted March 10, 2006, 10:56 a.m.

Preparing a Space for Recording (often on a budget)

Posted March 7, 2006, 10:41 a.m.

By Gary Bromham

When preparing a space for recording and mixing we enter a potential minefield, as no two areas will sound the same, and therefore no one-solution-fits-all instant fix is available. There are, however, a few systematic processes we can run through to facilitate vastly improving our listening environment.

When putting together a home studio, it is very easy to spend sometimes large sums of money buying equipment, and then to neglect the most important aspect of the sound; namely the environment set up and used for recording. No matter how much we spend on computers, speakers, guitars, keyboards or amps etc., we have to give priority to the space in which they are recorded.

Whether it be a house, apartment, or just a room, the method is still based on our ability to soundproof and apply sound treatment to the area. It is extremely difficult to predict what will happen to sound waves when they leave the speakers. Every room is different and it’s not just the dimensions that dictate how a room will sound. Assorted materials which make up walls, floors, ceilings, windows and doors - not to mention furniture - all have an effect on what we hear emanating from our monitors.

Fig 1. A vocal booth with off the shelf acoustic treatment fitted.

Whether we have a large or a small budget to sort out our space, there are a number of off-the-shelf or DIY solutions we can employ to help remedy our problem. It should be pointed out at this stage that a high-end studio and a home project studio are worlds apart. Professional studio design demands far higher specification and uses far narrower criteria as its benchmark, and therefore costs can easily run in to hundreds of thousands!

Why do we use acoustic treatment?

An untreated room - particularly if it is empty - will have inherent defects in its frequency response; this means any decisions we make will be based on the sound being ‘coloured’. If you can’t hear what is being recorded accurately then how can you hope to make informed decisions when it comes to mixing? Any recordings we make will inherit the qualities of the space in which they are recorded. Fine if it’s Abbey Road or Ocean Way, but maybe not so good if it’s your bedroom.

No matter how good the gear is, if you want your recordings or mixes to sound good elsewhere when you play them, then you need to pay attention to the acoustic properties of your studio space.

Begin with an empty room

When our shiny new equipment arrives in boxes, our instinct is always to set it up depending on whether it ‘looks right’, as if we are furnishing our new apartment.


Beware. Your main concern is not to place gear and furniture where they look most aesthetically pleasing, but where they sound best. The most important consideration is to position the one thing that takes up zero space but ironically consumes all the space. It is called the sound-field, or the position in the room where things sound best.

One of the things I have learned is that the most effective and reliable piece of test equipment is - surprise surprise - our ears! Of course we need more advanced test equipment to fine-tune the room but we need to learn to trust our ears first. They are, after all, the medium we use to communicate this dark art of recording.


Before you shift any furniture, try this game.

Ask a friend to hold a loudspeaker, and whilst playing some music you are familiar with, use a piece of string or something which ensures he or she maintains a constant distance from you of say 2-3 metres. Get them to circle around you whilst you stand in the centre of the room listening for the place where the room best supports the ‘sound-field’. The bass is usually the area where you will hear the greatest difference. As a guide listen for where the bass sounds most solid or hits you most firmly. Why am I focusing on bass? Because, if you get the bass right, the rest will usually fall into place.

Also, avoid areas where the sound is more stereo (we are after all holding up just one speaker, a mono source); this is usually an indication of phase cancellation. Beware of areas where the sound seems to disappear.

Finally, having marked a few potential positions for speaker placement, listen for where the speaker seems to sound closest at the furthest distance. We are looking for a thick, close, bassy and mono signal. When we add the second speaker this will present us with a different dilemma but we’ll talk about speakers later.

Remember: Though you may not have any control over the dimensions of your room, you do have a choice as to where you set up your equipment, and where you place your acoustic treatment. As well as the above techniques there are other things to consider.

  • It is generally a good idea to set up your speakers across the narrowest wall.

  • As a rule, acoustic treatment should be as symmetrical as possible in relation to your walls.

  • Ideally your speakers should be set up so that the tweeters are at head height

  • The consistency of the walls has a huge bearing on the sound. If they are thin partition walls then the bass will disperse far easier and be far less of a problem than if they are solid and and prevent the bottom end from getting out. (This is a Catch-22 as thin walls will almost certainly not improve relations with neighbours!)

Audio 1.'Incredible' Front Room:

Audio 2.'Incredible' Center Room:

Audio 3.'Incredible' Back Room:

Three audio examples demonstrating the different levels of room ambience present on a vocal sample played 0.5 m/2.5m/5m from the speakers in a wooden floored room.

The Live Room

If you are lucky enough to have plenty of space and are able to use a distinct live area the rules we need to observe when treating a listening area don’t necessarily apply here. Drums, for example, often benefit from lots of room ambience, particularly if bare wood or stone make up the raw materials of the room. I’ve also had great results recording guitars in my toilet, so natural space can often be used to create a very individual sound. Indeed, I’ve often heard incredible drum sounds from rooms you wouldn’t think fit to record in.

Fig 2. Reflexion Filter made by SE Electronics.

‘Dead Space’

It is often a good idea to designate a small area for recording vocals or instruments which require relative dead space. It would be unnatural (not to mention almost impossible) to make this an anechoic chamber, devoid of any reflections, but at the same time the area needs to be controllable when we record. Most of us don’t have the luxury of having a separate room for this and have to resort to other means of isolating the sound source like the excellent Reflexion Filter made by SE Electronics. This uses a slightly novel concept in that it seeks to prevent the sound getting out into the room and subsequently cause a problem with reflections in the first place. Failing this, a duvet fixed to a wall is often a good stopgap and the favourite of many a musician on a tight budget.

Time for Reflection

Every room has a natural ambience or reverb, and it should be pointed out at this stage that it is not our aim to destroy or take away all of this. If the control room is made too dry then there is a good chance that your mixes will have too much reverb, the opposite being true if the room is too reverberant.

The purpose of acoustic treatment is to create an even reflection time across all - or as many as possible - frequencies. It obviously helps if the natural decay time of this so called reverb isn’t too excessive in the first place.

Higher frequency reflections, particularly from hard surfaces, need to be addressed as they tend to distort the stereo image, while lower frequency echoes, usually caused by standing waves, often accent certain bass notes or make others seem to disappear. High frequency "flutter echoes", as they are known, can often be lessened by damping the areas between parallel walls. A square room is the hardest to treat for this reason, which is why you generally see lots of angles, panels and edges in control room designs. Parallel walls accentuate any problems due to the sound waves bouncing backwards and forwards in a uniform pattern.

Standing waves

Fig 3. A graph showing different standing waves in a room

Standing, or stationery, waves occur when sound-waves remain in a constant position. They arise when the length of this wave is a multiple of your room dimension. You will hear an increase in volume of sounds where wavelengths match room dimensions and a decrease where they are half, quarter or eighth etc. They tend to affect low end or bass (because of the magnitude of the wavelength). For this reason they are the hardest problem to sort out, and because of the amount of absorption and diffusion needed generally the costliest to sort out. Further explanation is required.

Suppose that the distance between two parallel walls is 4 m. Half the wavelength (2m) of a note of 42.5 Hz (coincidentally around the pitch of the lowest note of a standard bass guitar-an open ’E’) will fit exactly between these surfaces. As it reflects back and forth, the high and low pressure between the surfaces will stay constant – high pressure near the surfaces, low pressure halfway between. The room will therefore resonate at this frequency and any note of this frequency will be emphasized.

Smaller rooms sound worse because the frequencies where standing waves are strong are well into the sensitive range of our hearing. Standing waves don't just happen between pairs of parallel surfaces. If you imagine a ball bouncing off all four sides of a pool table and coming back to where it started; a standing wave can easily follow this pattern in a room, or even bounce of all four walls, ceiling and floor too. Wherever there is a standing wave, there might also be a 'flutter echo'.

Next time you find yourself standing between two hard parallel surfaces, clap your hands and listen to the amazing flutter echo where all frequencies bounce repeatedly back and forth. It's not helpful either for speech or music.

Audio 4. Subtractor in Reason:

Here’s an ascending sequence created in Reason using Subtractor set to a basic sinewave. Whilst in the listening position play back at normal listening level. In a good room the levels will be even but if some notes are more pronounced or seem to dissapear this usually indicates a problem at certain frequencies in your room.

Fig 4. A chromatic sequence using Subtractor created in Reason.
Download this as a Reason file and convert the notes in the file to frequency and wave length.

Absorption or Diffusion...that is the question?

The two main approaches when sorting out sound problems are finding the correct balance between absorption and diffusion. While absorbers, as their name suggests, absorb part of the sound; diffusers scatter the sound and prevent uniform reflections bouncing back into the room.

Absorbers tend to be made of materials such as foam or rockwool. Their purpose is to soak up sound energy. Foam panels placed either side of the listening position help with mid or high frequencies or traps positioned in corners help to contain the unwanted dispersion of bass.

Diffusers are more commonly made of wood, plastic or polystyrene. By definition they are any structure which has an irregular surface capable of scattering reflections. Diffusers also tend to work better in larger spaces and are less effective than absorbers in small rooms.

Off-the-Shelf solutions

Companies such as Real TrapsAuralex and Primacoustic offer one-stop solutions to sorting out acoustic problems. Some even provide the means for you to type in your room dimensions and then they come back with a suggested treatment package including the best places to put it. These days I think these offer excellent solutions and are comparatively cheap when you look at the solutions they offer. What they won’t give you is the sound of a high end studio where huge amounts of measurement and precise room tuning is required but leaving science outside the door they are perfect for most project studios.


The DIY approach can be viewed from two levels. The first, a stopgap, where we might just improvise and see what happens. The second, a more methodical, ‘let’s build our own acoustic treatment because we can’t afford to buy bespoke off the shelf tiles and panels’ approach.

  • This could simply be a case of positioning a sofa at the back of the room to act as a bass trap. Putting up shelves full of books which function admirably as diffusers. Hanging duvets from walls or placing them in corners for use as damping. I even know of one producer who used a parachute above the mixing desk to temporarily contain the sound!

  • Build your own acoustic treatment. I personally wouldn’t favour this as it is very time consuming and also presumes a certain level of abilty in the amateur builder department. The relative cheapness of ‘one solution’ kits where all the hard work is done for you also makes me question this approach. However, there are numerous online guides for building your own acoustic panels and bass traps which can save you money.


Though speakers aren’t directly responsible for acoustic treatment their placement within an acoustic environment is essential. I’ve already suggested how we might find the optimum location in a room for the speakers; the next critical thing is to determine the distance between them. If they are placed too close together the sounds panned to the centre will appear far louder than they actually are. If they are spaced too far apart then you will instinctively turn things panned in the middle up too loud. The sound is often thin and without real definition.

Finally, speaker stands or at least a means of isolating the speaker from the surface on which it rests is always a good idea. The object is to prevent the speaker from excessive movement and solidify the bass end. MoPads or China Cones also produce great results


The role of headphones in any home studio becomes an important one if you are unsure of whether to trust the room sound and the monitors. This, in essence, removes acoustics from the equation. Though I would never dream of using them as a replacement for loudspeakers, they are useful for giving us a second opinion. Pan placement can often more easily be heard along with reverb and delay effects


With only a small amount of cash and a little knowledge it is relatively easy to make vast improvements to the acoustics of a project studio. A science-free DIY approach can work surprisingly well, particularly if you use some of the practical advice available on the websites of the companies offering treatment solutions. Unfortunately, most musicians tend to neglect acoustic treatment and instead spend their money on new instruments or recording gear. When we don’t get the results we expect it is easy to blame the gear rather than look at the space in which they were recorded or mixed. Do yourself a favour - don’t be frightened, give it a go. Before you know it you’ll be hearing what’s actually there!

Gary Bromham is a writer/producer/engineer from the London area. He has worked with many well-known artists such as Sheryl Crowe, Editors and Graham Coxon. His favorite Reason feature? “The emulation of the SSL 9000 K console in 'Reason' is simply amazing, the new benchmark against which all others will be judged!”

Posted March 7, 2006, 10:41 a.m.

Recording Vocals and Selecting a Microphone

Posted March 6, 2006, 10:33 a.m.

By Gary Bromham

Performing a lead vocal is arguably the toughest job in the recording studio. This in turn puts more emphasis on the importance of capturing and recording the vocal performance as perfectly as possible. Vocalists often tire easily and generally their early takes tend to be the best (before the thinking and over-analyzing takes over!)

Usually, and in a very short space of time, an engineer has to decide which mic, signal path (preamp, compressor eq etc) to use, set the correct level for recording and headphone balance, create the right atmosphere for singing and generally be subjected to, at best, minor grunts, at worst verbal abuse until the penny drops! Vocalists are a sensitive bunch and need nurturing, cuddling and whatever else it takes to make them feel like a supertar!

During this article I shall attempt to set out a strategy for accomplishing these goals and maybe throw in a tip or two I’ve picked up along the way to assist in capturing the perfect take.

Selecting a Microphone

Microphones come in all shapes and sizes but a basic understanding of how they work will help in any assessment of which one we choose.

All microphones work in a similar way. They have a diaphragm (or ribbon), which responds to changes in air pressure. This movement or vibration is in turn converted into an electrical signal, which is amplified to produce a sound. This is very simplistic but essentially the basic science behind making a sound with a mic.

There are three main types of microphone to choose from.- Dynamic, Ribbon and Condenser.

Dynamic microphones are generally used for more close miking purposes such as drums or guitar cabinets, their sound is usually more mid-range focused and they can cope with higher sound pressure levels (SPL’s)

Condenser, or Capacitor mics, as they are also known, are more sensitive to sound pressure changes. They also tend to have a greater frequency response or dynamic range than dynamic mics. For this reason they tend to be the de-facto choice for vocals. Condenser microphones require a power source, called phantom power, to function. This is needed to power the built in preamplifier and also to polarize (power) the capsule. However this may not always be the choice. Bono from U2 for example likes to use a Shure SM-58 dynamic mic as it allows him more freedom to move around or perform the vocal as if in a live environment! A condenser mic, due to its sensitivity, might prohibit being held in the hand due to noises or indeed it may have too greater frequency range!

Ribbon mics are the curved ball here, so to speak, as they are often richer in tone to both our alternatives. They are softer or more subtle; they tend not to have the hyped top-end of condenser mics and unlike dynamic mics are very sensitive to SPL changes. For this reason they have to be treated with care as the ribbon will not tolerate excessive movement from either loud sound sources or being thrown around! They also generally have a much lower output level to the other two and subsequently need more gain from a pre-amp.

Fig Sm58
Here’s a short snippet of a vocal I’m currently working on recorded with a Shure SM58:

Fig1 U87
The same recorded with a Neumann U-87:

Fig1 Coles4038
And with a Coles 4038 ribbon mic:

When comparing models there are a number of important specifications we need to consider.

Frequency Response

Microphone Data

When we look at the frequency response of the vocal mic we select will it sound flat or natural or will it boost certain frequencies? It is often preferable, particularly with vocals, for a microphone to enhance or accentuate certain frequencies, which suit a particular singer. Check out for a detailed look at different mics specs. I love this site and spend hours trawling through the pages…does this mean I’m sad and need to get a life?

Sound Pressure Level (SPL)

How much dynamic range or level can the microphone cope with? This is the difference between the maximum sound pressure level and the noise floor or in basic terms the range of usable volume without distortion at high level or noise at low level. Dynamic mics are generally much better at dealing with loud source material than the condenser or ribbon variety.

Noise Floor or Noise level

How loud is the background noise created by the microphone itself? Obviously for someone who sings rock music this is less of an issue than some body who sings ambient jazz. As a rule of thumb Capacitor mics are more adept at capturing subtleties and nuances than dynamic mics.


Scientifically this is a measure of how efficiently a microphone converts sound pressure changes to control voltage or electrical signals. This basically is how loud the microphone is capable of being. You remember I mentioned earlier that Ribbon mic require a preamplifier with lots of gain to get the correct level to feed the mixer or recorder-in our case ‘Reason’.

Polar Patterns

Don’t worry…nothing to do with global warming!

Our final consideration in choosing a microphone is the pickup pattern or as it is more commonly known the Polar Pattern. On a circular graph this is a representation of which direction a mic picks up sound. The diagram illustrates how this works.


Fig 2. The diagram shows three basic polar patterns. All other patterns are variations of these. The blue circle is an Omni pattern, the red circles show a figure of eight and the green line shows the cardiod.

There are essentially three basic patterns for us to consider when understanding where the mic will pickup sound:

    • Omni-directional.

As its name suggests, the microphone will pickup sound equally from all directions. Useful if you want to record all the ambience or space around the source.

    • Cardiod

Otherwise known as (and as its name suggests) ‘heart-shaped’ Picks up the source mainly from the front, while rejecting most sound from the sides and rear. The advantage here is that the microphone captures only the source that it is pointing at. Hyper-cardiod is similar and often cast in the same category. These simply have a narrower field of pick up than the normal cardiod and are very well suited for singers where more isolation is required or else where feedback is a problem.

    • Bi-Directional

Also known as ‘figure of eight’. Here sound is picked up equally from the front and rear, whilst signal from the sides is rejected.

Generally speaking there is no rule as to which type of microphone or which pattern we should use when recording vocals although most engineers tend to veer towards a condenser mic and use a cardiod pattern. There is good argument to suggest that an omni pattern is the ultimate setting but this poses a further question relating to the recording environment, which I shall touch on, later in this article.

In summary our checklist when choosing a suitable microphone should look something like this:

  1. Consider the frequency response. Is it flat and will it therefore produce a more natural result or does it boost particular frequencies and thus enhance our vocal sound?

  2. Check the polar pattern. Does it have the pick up pattern we require?

  3. Check the sensitivity. How much gain will we need on our preamp to get the required level for recording?

  4. Check the dynamic range and the noise level. Can the mic handle the softest and loudest levels for capturing the vocal performance?

Practical tips and further considerations

Shock treatment

It is generally beneficial to use a shock-mount when recording vocals. This prevents low frequency sounds from getting in to the microphone.

Pop treatment

Fig 3. Hi-pass filter in the Reason eq section, set to take out any unwanted noises below 80Hz.

It is also a good idea to use a pop shield. Often when a singer stands too close to the microphone sudden puffs of air such as ‘p’ and ‘f’ sounds produce unwanted noises. Pop filters can be bought ready-made to prevent this but the more resourceful amongst us have sometimes resorted to the DIY approach and stolen a pair of our wife’s (or husbands!!!) stockings and stretched them over a wire coat hanger to achieve a similar result.

To help with both of the above problems we might also try a hi-pass filter. If the microphone does not have a dedicated switch then we could use the filter in the eq section such as the one in the channel strip in Reason.

The Proximity Effect

Nothing to do with over-use of garlic in cooking and need for breath fresheners!

As we get nearer or further away from a microphone the bass frequencies increase or decrease accordingly. Typically a cardiod microphone will boost or cut frequencies around 100Hz by as much as 10-15dB if we move from 25cm to 5cm. and back again. This phenomenon is known as the ‘Proximity Effect’. We can use this to our advantage if the singers mic technique is good, producing a richer, deeper and often more powerful sound that pop or rock singers really like! Radio DJ’s or announcers have been using this technique for years, particularly on the late night luuuurrrrv show!

Unfortunately the use of this effect requires the vocalist to maintain a fairly consistent distance from the mic and for this reason it is often more desirable to select a mic which has less of this proximity effect. As a generalisation condenser microphones are better at this than dynamic mics. Here are a few audio examples demonstrating this principle.

Vocal recorded using a Neumann U-87 recorded at a distance of 3cm:

At a distance of 18cm:

Finally at 60cm:

The Tube Effect

A ‘tube’ or ‘valve’ microphone uses a valve as the preamplifier for gain rather than a conventional solid-state (usually FET) circuit. Most early condenser microphones such as the Neumann U-47 or the AKG C-12 employed this circuitry, at least until transistors were invented. The tonal characteristic is often warmer and more pleasing to the ear, the sound is however coloured and not always suitable for every singer. In reality the tube is adding a small level of distortion and if overused can sound muddy and unfocused!

The sound of the classic AKG C-12 Valve microphone:

Recording Environment

Something people often overlook and underestimate is the effect of the room or recording environment on the sound of the vocal. Indeed you can be using the best microphone in the world and still obtain an awful sound if the acoustic space is reflective or badly treated. To an extent our ears are able to block out or ignore deficient room acoustics whereas the microphone only records what’s there! An omni-directional microphone will accentuate this whereas a hyper-cardiod will, to an extent, minimise it. Unfortunately, not all of us are blessed with perfect recording environments all of the time and often have to adapt or improvise with the set of conditions we have.

Reflection filters have become very trendy these days with the advent of bedroom studios. The SE reflection filter is one I use personally at home and highly recommend. Failing on this, duvets, carpets or anything absorbent, will help in alleviating the situation. In summary it is often not your mic that is the problem but the environment in which it is being recorded which is the real problem. Save some money, get down to Ikea, and buy a couple of new duvets before spending another $1000 on a bespoke microphone!

Trade Secrets

Headphone balance

The headphone mix, after microphone selection, is probably the most critical part of the recording process for a vocal. We can save ourselves hours, not to mention several tantrums, if the balance is good for our singer. Some vocalists also like to sing with one side of their headphones off. In my experience this can be an indication that their headphone mix isn’t completely right. Singers also tend to have their ‘cans’ too loud because they believe they can’t hear themselves when in reality they are not relaxed or are hearing themselves incorrectly. When pitching is flat this can also be a tell tale sign of headphones being too loud, the reverse being true when the singer is performing sharp! (‘ I should point out at this stage that ‘cans’ is on the list of banned word in certain studios!)

It is often a good idea to setup a separate headphone mix or, cue mix, as it is sometimes called for the singer. This is useful for a number of reasons. If we want to tweak the vocal whilst the singer is singing, but without them hearing us do so, we need to set up a separate balance from the one we are listening to in the control room. For this we simply use one of the sends in the mixer in Reason. We route the output from one of the sends in the master section to the hardware interface, which in turn feeds our headphones via dedicated outputs on our soundcard. Provided we have the Pre button engaged, to the left of the Send knob, when we solo a channel in the mixer the vocalist will still hear only their individual cue mix.


Fig 4. Shows Send 8 being used as a cue send for the vocalists headphone mix. Note the send is sent Pre-fade so that whatever changes we make to the channel (level, solo mute etc) do not affect what is heard in the cans. Also note that in the Master section we can monitor the FX send via the control room out.


Fig 5. Here we see the back of the Master section where send 8 is routed out of Outputs 3-4 of our soundcard via Reasons hardware interface.

Time is of the essence

Capture that take before it’s too late! Singers have a tendency to over-analyse or be over critical of their performance. Often the first thing they sing, before the inhibitions set in, are the best things they sing. My strategy is to record everything. It is after all much easier to repair a less than perfect vocal sonically, even if the compressor and pre-amp weren’t set up perfectly, than it is get the vocalist to repeat that amazing performance.


Singers often like to sing with reverb. This is in itself okay but not if it’s at the expense of pitching and timing. It’s harder to find the pitch of a note if all you’re hearing is a wash of reflective sound. Isn’t that what we spent all that time trying to eliminate when we created the recording environment? Not exactly, no, sometimes vibe is an important factor but there is a happy medium here!

Vocal chain

Selecting a preamplifier, and if necessary a compressor, is often almost as difficult as choosing the right mic. Whether you are using a Neve 1073 or an Apogee Duet as your preamplifier the principle of setting up and recording a vocal is the same. Increase the gain on the pre-amp until you start to hear a small amount of audible distortion or see slight clipping and then reduce the level by 5-10dB.

I have often heard it said that if we select a valve microphone for our vocal then the preamp and compressor might be better suited to being solid-state. Too many valves in the chain can often add too much colour! Personally, in my chain, I like a valve mic with solid-state preamp followed by a valve compressor.

We only really need a compressor (or more likely a limiter) if we have a particularly dynamic vocalist. An LA-2A opto or 1176 FET style is ideal if the budget allows! Be very sparing as compression if set incorrectly cannot be undone! The M-Class compressor can be set up to behave in a subtle way, conducive to controlling level fluctuations but not squashing the sound.

Fig 6. A typical compressor set-up for recording vocals. Moderate attack and release settings ensure a relatively inaudible effect on the input when recording a vocal.

The Hardness Factor!

An interesting exercise when evaluating different microphones for different vocalists is to rate them on a scale of 1-10 on a hardness factor. A Shure SM-58 dynamic mic might get an 8 while a Rode NT2 condenser mic might get a 4. When selecting the microphone, we also give our singer a rating as well. A hard sounding voice gets a softer microphone whilst a more subtle vocal may require a harder sounding mic.


Whilst writing this article I have been conscious of not being too preachy! These are only guidelines to recording a vocal and often the great thing with recording is breaking rules. A basic understanding of how the microphone works is helpful but the single most important thing is getting the atmosphere right for the vocal to happen in the first place. Many great vocal performances have been captured with strange microphone selections and singers insisting on stripping off in the vocal booth to get the vibe! Don’t question it, just remember…record everything!

Gary Bromham is a writer/producer/engineer from the London area. He has worked with many well-known artists such as Sheryl Crowe, Editors and Graham Coxon. His favorite Reason feature? “The emulation of the SSL 9000 K console in 'Reason' is simply amazing, the new benchmark against which all others will be judged!”

Posted March 6, 2006, 10:33 a.m.